requirements.yml:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| name: apple_tensorflow channels: - conda-forge - nodefaults dependencies: - absl-py - astunparse - gast - google-pasta - grpcio - h5py - ipython - keras-preprocessing - numpy - opt_einsum - pip=20.2.4 - protobuf - python-flatbuffers - python=3.8 - scipy - tensorboard - tensorflow-estimator - termcolor - typeguard - typing_extensions - wheel - wrapt
|
conda env create --file=PATH_TO_ENVIRONMENT.YML --name=tf
conda activate tf
pip install --upgrade --force --no-dependencies https://github.com/apple/tensorflow_macos/releases/download/v0.1alpha3/tensorflow_addons_macos-0.1a3-cp38-cp38-macosx_11_0_arm64.whl https://github.com/apple/tensorflow_macos/releases/download/v0.1alpha3/tensorflow_macos-0.1a3-cp38-cp38-macosx_11_0_arm64.whl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| import tensorflow as tf import time mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) start = time.time() model.fit(x_train, y_train, epochs=5) end = time.time() model.evaluate(x_test, y_test) print(end - start)
|